有时候人总是来点神秘,要么是因为胆小,要么是想创造点惊喜。
以下介绍拼图藏信以及两种数字极客的方式。不过要特别提醒:明明什么都对她说了,但她却一辈子也发现不了……简直悲哀!
Aperiodical 是Katie Steckles,Christian Perfect和Peter Rowlett 的共享博客,他们一起分享数学知识。
他们也积极记录π日活动,比如2015年3月14日Katie Steckles发文《Pi Day 2015: The Aperiodical goes π mad》,索引了很多π Day资源,包括自己在π日举行π派对的建议:
你可能早已听说过,π 与地球上的许多河流有关:河流弯曲河道的曲线长度与河道首尾直线距离之比通常都接近于 3.14 —— 河道越是蜿蜒曲折,这个近似值就越好——亚马逊河便是一个例子。
https://envirobites.org/2019/03/14/pi-me-a-river-a-meandering-tale-of-pi-rivers-and-water-quality/
最令我惊叹的是 2010 年 11 月 《科学》杂志上报道的德国格丁根大学马克 · 普朗克动力学与自组织科学研究所和伯恩斯坦计算神经科学研究中心的科学家 Matthias Kaschube 及其团队的一项研究成果。
圆周率 π 是一个不等于任何两个整数之比的实数,它在整数 3 之后再 带上一个具有无限长度但又永远不循环的小数:π ≈ 3.1415926 · · · 。尽管人类对 π 的认知可以追溯到远古,最先对 π 值进行系统严格的估算者应当首推古希腊科学家 Archimedes(阿基米德,公元前 287—前 212 年),他得出不等式 3 + 10/71 < π < 3 + 1/7,平均值就是 π ≈ 3.14 · · · 。
祖冲之(429-500)
在我国,三国后期魏国人刘徽(生于公元 250 年左右)留下了宝贵数学遗产《九章算术注》和《海岛算经》,并创始和使用了“割圆术”即用圆的内接和外切正多边形来逼近圆的周长。割圆术为后来南北朝时期的数学家祖冲之(公元 429—500 年)的估算 3.1415926 < π < 3.1415927 提供了最基本的方法。此外,祖冲之还以很简单的分数形式给出了圆周率的约率 π ≈ 22/7 和密率 π ≈ 355/113。