π值计算史

圆周率 2020-05-05 1291 次浏览 次点赞

圆周率 π 是一个不等于任何两个整数之比的实数,它在整数 3 之后再 带上一个具有无限长度但又永远不循环的小数:π ≈ 3.1415926 · · · 。尽管人类对 π 的认知可以追溯到远古,最先对 π 值进行系统严格的估算者应当首推古希腊科学家 Archimedes(阿基米德,公元前 287—前 212 年),他得出不等式 3 + 10/71 < π < 3 + 1/7,平均值就是 π ≈ 3.14 · · · 。

4e91a90affe64ba8ae93771e6446094b.jpeg
祖冲之(429-500)

在我国,三国后期魏国人刘徽(生于公元 250 年左右)留下了宝贵数学遗产《九章算术注》和《海岛算经》,并创始和使用了“割圆术”即用圆的内接和外切正多边形来逼近圆的周长。割圆术为后来南北朝时期的数学家祖冲之(公元 429—500 年)的估算 3.1415926 < π < 3.1415927 提供了最基本的方法。此外,祖冲之还以很简单的分数形式给出了圆周率的约率 π ≈ 22/7 和密率 π ≈ 355/113。

380e95c23e2e4ea29f2597f375a821e2.jpeg
割圆术

古人计算圆周率,一般都是用正多边形来逼近圆的。Archimedes 用正 96 边形逼近圆而得到 π 小数点后 3 位的精度,刘徽用正 3072 边形逼近圆也只 能得到 π 小数点后 5 位的精度。

由于这些计算方法效率极低,估算 π 的历史进程十分缓慢。直到微积分问世以后,情况才大为改观。1706 年,英国天文学家 John Machin 发现了一个简单的解析公式并用它来计算 π 达到了小数点后 100 位的精确度:

π = 16 arctan(1/5) − 4 arctan(1/239)

微积分的出现,不但给出了许多关于 π 的解析估计,更大大地加快了其数值计算。且不说优雅漂亮的 Gregory-Leibniz 和差公式

1/1 − 1/3 + 1/5 − 1/7 + 1/9 − · · · = π/4

以及 Wallis 乘积公式

2/1 × 2/3 × 4/3 × 4/5 × 6/5 × 6/7 × 8/7 × 8/9 × · · · = π/2

后来发现能够用来对 π 作快速近似计算的公式还有很多。

f094f93f1dfb4fe3960bb822fa5e2c52.png
莱布尼茨方法

6dfbb65eb0034f9fbb4d5882eab3dce3.png
黎曼zeta函数方法

👍



本文由 PeakOneTemple 整理创作,参考 知识共享署名 3.0 协议,撰写及摘编内容仅反映个人观点和立场,如果任何可能的雇主与赞助者持有相同的意见,只是巧合;基于互联网链接的腐烂率,无法持续验证外部链接的真实性和有效性,也不对可能的链接无效(linkrot)或者内容转移(Content Drift)负责。

「圆周率文化」坚持非功利写作和分享,但会有一些获利推荐,以及接受您的打赏,这都会鼓励我

如果您也希望拥有一个博客,请阅读《如何开始写博客》 ,以及《从域名到运营:开办独立网站全流程》。

了解我的全职业务,请登录THAILYCARE。欢迎就管理咨询信息化服务汽车绞盘宠物行业创意项目休闲度假等事业咨询、交流和合作。
感谢您的支持,我会持续给您山巅.一寺.一壶酒的独特视角!

「圆周率文化」,分享科技、商业、医学及人文资讯。