This code provides a PyTorch implementation and a pretrained ResNet50 model for the base(M, f*)
model of the paper Geolocation Estimation of Photos using a Hierarchical Model and Scene Classification with similar performance (despite less model complexity) as the originally reported results of the ResNet101.
To use the pre-trained model by default, first download the model checkpoint by running:
mkdir -p models/base_M
wget https://github.com/TIBHannover/GeoEstimation/releases/download/pytorch/epoch.014-val_loss.18.4833.ckpt -O models/base_M/epoch=014-val_loss=18.4833.ckpt
wget https://github.com/TIBHannover/GeoEstimation/releases/download/pytorch/hparams.yaml -O models/base_M/hparams.yaml
Inference with pre-trained model:
python -m classification.inference --image_dir resources/images/im2gps/
Available argparse parameter:
--checkpoint CHECKPOINT
Checkpoint to already trained model (*.ckpt)
--hparams HPARAMS
Path to hparams file (*.yaml) generated during training
--image_dir IMAGE_DIR
Folder containing images. Supported file extensions: (*.jpg, *.jpeg, *.png)
--gpu
Use GPU for inference if CUDA is available, default to true
--batch_size BATCH_SIZE
--num_workers NUM_WORKERS
Number of workers for image loading and pre-processing
Example output that is also stored in a CSV file:
img_id p_key pred_class pred_lat pred_lng
Tokyo_00070_439717934_3d0fd200f1_180_97324495@N00 hierarchy 5367 41.4902 -81.7032
429881745_35a951f032_187_37718182@N00 hierarchy 8009 37.1770 -3.5877
104123223_7410c654ba_19_19355699@N00 hierarchy 7284 32.7337 -117.1520
The (list of) image files for testing can be found on the following links:
- Im2GPS: http://graphics.cs.cmu.edu/projects/im2gps/
- Im2GPS3k: https://github.com/lugiavn/revisiting-im2gps/
Download and extract the two testsets (Im2GPS, Im2GPS3k) in resources/images/<dataset_name>
and run the evaluation script with the provided meta data, i.e., the ground-truth coordinate for each image.
When using the default paramters, make sure that the pre-trained model is available.
wget https://raw.githubusercontent.com/TIBHannover/GeoEstimation/original_tf/meta/im2gps_places365.csv -O resources/images/im2gps_places365.csv
wget https://raw.githubusercontent.com/TIBHannover/GeoEstimation/original_tf/meta/im2gps3k_places365.csv -O resources/images/im2gps3k_places365.csv
python -m classification.test
Available argparse paramters:
--checkpoint CHECKPOINT
Checkpoint to already trained model (*.ckpt)
--hparams HPARAMS
Path to hparams file (*.yaml) generated during training
--image_dirs IMAGE_DIRS [IMAGE_DIRS ...]
Whitespace separated list of image folders to evaluate
--meta_files META_FILES [META_FILES ...]
Whitespace separated list of respective meta data (ground-truth GPS positions). Required columns: IMG_ID,LAT,LON
--gpu
Use GPU for inference if CUDA is available, default to True
--precision PRECISION
Full precision (32), half precision (16)
--batch_size BATCH_SIZE
--num_workers NUM_WORKERS
Number of workers for image loading and pre-processing
Results on the Im2GPS and Im2GPS3k test sets. The reported accuracies (in percentage) is the fraction of images localized within the given radius (in km) using the GCD distance. Note, that we used the full MP-16 training dataset and all 25600 images for validation, thus the results will differ when not all images are available.
Model | 1 | 25 | 200 | 750 | 2500 |
---|---|---|---|---|---|
base(M, c) | 9.3 | 31.6 | 49.8 | 67.1 | 78.9 |
base(M, m) | 13.9 | 34.6 | 48.1 | 68.4 | 79.3 |
base(M, f) | 15.6 | 39.2 | 48.9 | 65.8 | 78.5 |
base(M, f*) | 14.8 | 37.6 | 48.9 | 68.4 | 78.9 |
base(M, f*) (original) | 15.2 | 40.9 | 51.5 | 65.4 | 78.5 |
Model | 1 | 25 | 200 | 750 | 2500 |
---|---|---|---|---|---|
base(M, c) | 6.2 | 24.3 | 36.3 | 51.7 | 67.0 |
base(M, m) | 8.3 | 26.2 | 35.7 | 51.4 | 66.5 |
base(M, f) | 9.9 | 27.3 | 36.2 | 51.2 | 66.4 |
base(M, f*) | 10.1 | 28.0 | 36.9 | 51.1 | 67.0 |
base(M, f*) (original) | 9.7 | 27.0 | 35.6 | 49.2 | 66.0 |
ISN(M, f*, S3) (original) | 10.5 | 28.0 | 36.6 | 49.7 | 66.0 |
We provide a complete training script which is written in PyTorch Lightning and report all hyper-paramters used for the provided model. Furthermore, a script is given to download and pre-process the images that are used for training and validiation.
- Download training and validation images
- We provide a script to download the images given a list of URLs
- Due to no longer publicly available images, the size of the dataset might be smaller than the original.
- We also store the images in chunks using MessagePack to speed-up the training process (similar to multiple TFRecord files)
- Given multiple s2 partitionings (e.g. coarse, middle, fine from the paper), the respective classes are assigned to each image on both datasets.
- Training and hyper-paramters: All hyper-paramters can be configured in
configs/baseM.yml
as well as paramters from PyTorch LightningTrainer
class.
Necessary steps:
# download and preprocess images
wget https://github.com/TIBHannover/GeoEstimation/releases/download/v1.0/mp16_urls.csv -O resources/mp16_urls.csv
wget https://github.com/TIBHannover/GeoEstimation/releases/download/pytorch/yfcc25600_urls.csv -O resources/yfcc25600_urls.csv
python download_images.py --output resources/images/mp16 --url_csv resources/mp16_urls.csv --shuffle
python download_images.py --output resources/images/yfcc25600 --url_csv resources/yfcc25600_urls.csv --shuffle --size_suffix ""
# assign cell(s) for each image using the original meta information
wget https://github.com/TIBHannover/GeoEstimation/releases/download/v1.0/mp16_places365.csv -O resources/mp16_places365.csv
wget https://github.com/TIBHannover/GeoEstimation/releases/download/pytorch/yfcc25600_places365.csv -O resources/yfcc25600_places365.csv
python partitioning/assign_classes.py
# remove images that were not downloaded
python filter_by_downloaded_images.py
# train geo model from scratch
python -m classification.train_base --config config/baseM.yml
The geographical cell labels are extracted using the S2 geometry library and can be visualized on http://s2.sidewalklabs.com/regioncoverer/. Create a partitioning using the following command for a given dataset (as CSV file) which contains an image id, latitude and longitude. We provide the partitionings that are used in the paper below.
python partitioning/create_cells.py [-h] [-v] --dataset DATASET --output OUTPUT --img_min IMG_MIN --img_max IMG_MAX [--lvl_min LVL_MIN]
[--lvl_max LVL_MAX]
# Optional arguments:
# -h, --help show this help message and exit
# -v, --verbose verbose output
# --dataset DATASET Path to dataset csv file
# --output OUTPUT Path to output directory
# --img_min IMG_MIN Minimum number of images per geographical cell
# --img_max IMG_MAX Maximum number of images per geographical cell
# --lvl_min LVL_MIN Minimum partitioning level (default = 2)
# --lvl_max LVL_MAX Maximum partitioning level (default = 30)
# --column_img_path CSV input column name for image id / path
# --column_lat CSV input column name latitude
# --column_lng CSV input column name longitude
All requirements are listed in the environment.yml
. We recomment to use conda to install all required packages in an individual environment.
conda env create -f environment.yml
conda activate geoestimation-github-pytorch
# download pre-calculated parititonings
mkdir -p resources/s2_cells
wget https://raw.githubusercontent.com/TIBHannover/GeoEstimation/original_tf/geo-cells/cells_50_5000.csv -O resources/s2_cells/cells_50_5000.csv
wget https://raw.githubusercontent.com/TIBHannover/GeoEstimation/original_tf/geo-cells/cells_50_2000.csv -O resources/s2_cells/cells_50_2000.csv
wget https://raw.githubusercontent.com/TIBHannover/GeoEstimation/original_tf/geo-cells/cells_50_1000.csv -O resources/s2_cells/cells_50_1000.csv
@inproceedings{muller2018geolocation,
author = {Müller-Budack, Eric and Pustu-Iren, Kader and Ewerth, Ralph},
title = {Geolocation Estimation of Photos Using a Hierarchical Model and Scene
Classification},
booktitle = {Computer Vision - {ECCV} 2018 - 15th European Conference, Munich,
Germany, September 8-14, 2018, Proceedings, Part {XII}},
series = {Lecture Notes in Computer Science},
volume = {11216},
pages = {575--592},
publisher = {Springer},
year = {2018},
url = {https://doi.org/10.1007/978-3-030-01258-8\_35},
doi = {10.1007/978-3-030-01258-8\_35},
}
This work is published under the GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007. For details please check the LICENSE file in the repository.