
A catalogue of mathematical formulas involving π, with analysis

David H. Bailey∗

December 10, 2021

Abstract

This paper presents a catalogue of mathematical formulas and iterative algorithms for evaluating the math-
ematical constant π, ranging from Archimedes’ 2200-year-old iteration to some formulas that were discovered
only in the past few decades. Computer implementations and timing results for these formulas and algorithms
are also included. In particular, timings are presented for evaluations of various infinite series formulas to
approximately 10,000-digit precision, for evaluations of various integral formulas to approximately 4,000-digit
precision, and for evaluations of several iterative algorithms to approximately 100,000-digit precision, all based
on carefully designed comparative computer runs.

1 Background

The mathematical constant known as π = 3.141592653589793 . . . is undeniably the most famous and arguably
the most important mathematical constant. Mathematicians since the days of Archimedes, up to and including
the present day, have analyzed its properties and computed its numerical value.

The question of whether π is given by a simple ratio or algebraic construction has transfixed mathemati-
cians since ancient times. Squaring the circle, i.e., constructing a square with the same area as a given circle
using classical ruler-and-compass procedures, was one of the three premier unsolved problems of ancient Greek
mathematics. In the 1760s, the Swiss-French mathematician Johann Heinrich Lambert first proved that π is
irrational [28]. Then in 1882, the German mathematician Ferdinand von Lindemann proved that π is tran-
scendental [29], meaning that π is not the root of any polynomial with integer or rational coefficients. Among
other things, Lindemann’s result brought a merciful end to the countless attempts over the centuries to square
the circle. This is because any point or line segment that can be constructed using classical ruler-and-compass
procedures is provably given by a finite algebraic expression involving only the basic arithmetic operations
and square roots, and thus is the root of an integer coefficient polynomial of degree 2d for some integer d.

Attempts to compute numerical values of π are as old as π itself. Archimedes was the first to devise a
rigorous scheme, based on inscribed and circumscribed polygons. He obtained the bounds 3 10

71
< π < 3 1

7
, or,

in other words, 3.1408 . . . < π < 3.1428 . . . [4]. Subsequently other mathematicians, in Europe, India, China
and the Middle East, used Archimedes’ approach to compute more accurate values. For example, about 500
CE, the Indian mathematician Aryabhata found π to four digits, and, at roughly the same time if not before,
the Chinese mathematician Tsu Chung-Chih found π to seven digits. These and later computations were
spurred by the invention of positional base-10 arithmetic with zero, by unknown Indian mathematicians in
the first two or three centuries CE, a discovery which certainly deserves to be ranked as among the most
important mathematical discoveries of all time [7].

∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (retired) and University of California, Davis, Department of Com-
puter Science, dhbailey@lbl.gov.

1



With the development of calculus by Newton and Leibniz in the 1600s, and the discovery of infinite series
and other formulas using calculus, π was computed to tens, then hundreds of digits, culminating with Shanks’
1874 hand computation to 707 digits (alas, only the first 527 were correct). With the advent of the computer
in the 1940s, π was computed first to thousands of digits, then to millions, then to billions of digits by the
end of the twentieth century. Since then, the pace of progress has continued uninterrupted. In the latest
computation, announced on 18 August 2021, a record 62.8 trillion decimal digits were computed by a team
of Swiss researchers [23]. For other details on the historical computation of π, see [9].

One intriguing development in this area was the discovery, in 1997, of a formula for π that permits one to
calculate a string of binary or base-16 digits of π, beginning at an arbitrary starting position, without needing
to calculate any of the digits that came before [14]. Since 1997, numerous other formulas with this property
have been found for a variety of other mathematical constants. One of these formulas was used in 2010 to
calculate a string of binary digits of π beginning at the two quadrillionth position [31]. Others were used to
calculate base-64 digits of π2, base-729 digits of π2, and base-4096 digits of Catalan’s constant, in each case
beginning at position 10 trillion. For additional details, see [13] and [3].

This paper presents a collection of 72 formulas and algorithms that have been found by mathematicians
over the years involving π. While a comprehensive collection is of course not possible, preference is given in
this collection for formulas that satisfy the following criteria:

• Formulas that give π or a very simple expression involving π explicitly, as opposed to implicit relations
such as eiπ + 1 = 0.

• Formulas that give π or a very simple expression involving π as an infinite series, definite integral or
simple iterative algorithm.

• Formulas that involve simple notation, such as summations, integrals, binomial coefficients, exponentials,
logarithms, etc., that would be familiar to anyone who has completed a beginning calculus course.

• Formulas that are relatively new, discovered within the last 100 years or so.

Included in this listing are several formulas for π that have actually have been used in large calculations of
π, both before and since the rise of computer technology. These include formulas 2 through 5 prior to the 20th
century, and formulas 6, 7, 11, 12, 13, 14, 16, 18, 69 and 71 in the late 20th and early 21st century. Several
of these formulas, as we will see, are quite efficient. Formula 11 (known as the Ramanujan-Sato formula), for
example, adds roughly eight correct digits per term, while formula 12 (due to the Chudnovskys) adds roughly
14 digits per term.

Formulas 13 through 18 have the intriguing property, mentioned above, that they permit digits (in certain
specific bases) of the constant specified on the left-hand side to be calculated beginning at an arbitrary
starting position, without needing to calculate any of the digits that came before, by means of relatively
simple algorithms. Formulas 13 and 14 have been used in computations of high-order binary digits of π
[17, Sec 3.4–3.6], while formula 16 has been used in computations of high-order binary digits of π2, and
formula 18 has been used in computations of high-order base-3 digits of π2 [13]. Numerous other recently-
discovered formulas that possess the arbitrary digit-computation property for various mathematical constants
are catalogued in [3].

Many of these formulas are relatively new, in the sense that they were discovered only in the past few
decades. The formulas mentioned in the previous paragraph are certainly in this category, having been
discovered only since 1996. Many of the formulas from 19 through 50 were not well known until recently.
Formulas 64 through 67 are also relatively new, in the sense that they are part of a class of integral formulas
that are the subject of current research [10, 11, 12]. Formula 69 was discovered in 1976. Formulas 70, 71 and
72 were first published in 1984.

2



2 A catalogue of formulas for π

π

4
=

∞∑
n=0

(−1)n

(2n+ 1)
(1)

π

4
=

∞∑
n=0

(−1)n

(2n+ 1)22n+1
+

∞∑
n=0

(−1)n

(2n+ 1)32n+1
(2)

π

4
= 4

∞∑
n=0

(−1)n

(2n+ 1)52n+1
−
∞∑
n=0

(−1)n

(2n+ 1)2392n+1
(3)

π

4
=

∞∑
n=0

(−1)n

(2n+ 1)22n+1
+

∞∑
n=0

(−1)n

(2n+ 1)52n+1
+

∞∑
n=0

(−1)n

(2n+ 1)82n+1
(4)

π

4
= 3

∞∑
n=0

(−1)n

(2n+ 1)42n+1
+

∞∑
n=0

(−1)n

(2n+ 1)202n+1
+

∞∑
n=0

(−1)n

(2n+ 1)19852n+1
(5)

π

4
= 12

∞∑
n=0

(−1)n

(2n+ 1)492n+1
+ 32

∞∑
n=0

(−1)n

(2n+ 1)572n+1
− 5

∞∑
n=0

(−1)n

(2n+ 1)2392n+1
+ 12

∞∑
n=0

(−1)n

(2n+ 1)1104432n+1

(6)

π

4
= 44

∞∑
n=0

(−1)n

(2n+ 1)572n+1
+ 7

∞∑
n=0

(−1)n

(2n+ 1)2392n+1
− 12

∞∑
n=0

(−1)n

(2n+ 1)6822n+1
+ 24

∞∑
n=0

(−1)n

(2n+ 1)129432n+1

(7)

π =
√

12

∞∑
n=0

(−1)n

(2n+ 1)3n
(8)

π =
3
√

3

4
− 24

∞∑
n=0

(
2n
n

)
(2n+ 3)(2n− 1)42n+1

(9)

π

2
=

∞∏
n=1

4n2

4n2 − 1
(10)

1

π
=

2
√

2

9801

∞∑
n=0

(4n)!(1103 + 26390n)

(n!)43964n
(11)

1

π
= 12

∞∑
n=0

(−1)n(6n)!(13591409 + 545140134n)

(3n)!(n!)36403203n+3/2
(12)

π =
∞∑
n=0

1

16n

(
4

8n+ 1
− 2

8n+ 4
− 1

8n+ 5
− 1

8n+ 6

)
(13)

π = 4

∞∑
n=0

(−1)n

4n(2n+ 1)
− 1

64

∞∑
n=0

(−1)n

1024n

(
32

4n+ 1
+

8

4n+ 2
+

1

4n+ 3

)
(14)

π =

∞∑
n=0

(−1)n

4n

(
2

4n+ 1
+

2

4n+ 2
+

1

4n+ 3

)
(15)

π2 =
9

8

∞∑
n=0

1

64n

(
16

(6n+ 1)2
− 24

(6n+ 2)2
− 8

(6n+ 3)2
− 6

(6n+ 4)2
+

1

(6n+ 5)2

)
(16)

3



π
√

3 =
1

9

∞∑
n=0

1

729n

(
81

12n+ 1
− 54

12n+ 2
− 9

12n+ 4
− 12

12n+ 6
− 3

12n+ 7
− 2

12n+ 8
− 1

12n+ 10

)
(17)

π2 =
2

27

∞∑
n=0

1

729n

(
243

(12n+ 1)2
− 405

(12n+ 2)2
− 81

(12n+ 4)2
− 27

(12n+ 5)2
− 72

(12n+ 6)2

− 9

(12n+ 7)2
− 9

(12n+ 8)2
− 5

(12n+ 10)2
+

1

(12n+ 11)2

)
(18)

3π + 8 =

∞∑
n=0

12n22n(
4n
2n

) (19)

π2

6
− 2 log2 2 =

∞∑
n=1

(
2n
n

)
n24n

(20)

15π + 52 =

∞∑
n=0

(126n2 − 24n+ 8)23n(
6n
3n

) (21)

105π + 304 =

∞∑
n=0

(1920n3 − 928n2 + 424n− 16)24n(
8n
4n

) (22)

16π
√

3 + 81 =

∞∑
n=0

(49n+ 1)8n

3n
(
3n
n

) (23)

162− 6π
√

3− 18 log 3 =

∞∑
n=0

(−245n+ 338)8n

3n
(
3n
n

) (24)

π =

∞∑
n=0

(50n− 6)

2n
(
3n
n

) (25)

15π + 42 =

∞∑
n=1

(−4)n(2n)!2(3n)!(201− 952n)

(6n)!n!
(26)

15π
√

2 + 27 =

∞∑
n=0

8n(2n)!2(3n)!(350n− 17)

(6n)!n!
(27)

40π
√

3 + 243 =

∞∑
n=1

(−27)n(2n)!2(3n)!(81− 1080n)

(6n)!n!
(28)

20π
√

3 + 89 =
∞∑
n=1

(−1/3)n(2n)!2(3n)!(4123− 22100n)

(6n)!n!
(29)

15π + 240 log 2− 528 =

∞∑
n=1

(−1/2)n(89012n3 − 77362n2 + 482n+ 3028)(
5n
2n

) (30)

24516− 360π
√

3 =
∞∑
n=1

9n(2743n2 − 130971n− 12724)(
4n
n

) (31)

45π + 1164 =

∞∑
n=1

8n(430n2 − 6240n− 520)(
4n
n

) (32)

40π
√

3 + 1872 =

∞∑
n=1

3n(7175n2 − 15215n+ 480)(
4n
n

) (33)

4



288π
√

3− 576 log 2 + 324 =

∞∑
n=0

(9/8)n(5692 + 6335n− 5415n2)(
4n
n

) (34)

1008π
√

3− 576 log 2 + 7587 =

∞∑
n=0

(9/8)n(7517 + 1145n+ 18050n2)(
4n
n

) (35)

16

π
=

∞∑
n=0

42n+ 5

4096n

(
2n

n

)3

(36)

4

π
=

∞∑
n=0

(−1)n(4n)!(20n+ 3)

44n(n!)422n+1
(37)

4

π
=

∞∑
n=0

(−1)n(4n)!(260n+ 23)

44n(n!)4182n+1
(38)

4

π
=

∞∑
n=0

(−1)n(4n)!(21460n+ 1123)

44n(n!)48822n+1
(39)

2

π
√

3
=

∞∑
n=0

(4n)!(8n+ 1)

44n(n!)432n+1
(40)

1

2π
√

2
=

∞∑
n=0

(4n)!(10n+ 1)

44n(n!)492n+1
(41)

4

π
√

3
=

∞∑
n=0

(−1)n(4n)!(28n+ 3)

44n(n!)43n42n+1
(42)

4

π
√

5
=

∞∑
n=0

(−1)n(4n)!(644n+ 41)

44n(n!)45n722n+1
(43)

1

3π
√

3
=

∞∑
n=0

(4n)!(40n+ 3)

44n(n!)4492n+1
(44)

32

π2
=

∞∑
n=0

(
4n
2n

)(
2n
n

)4
(120n2 + 34n+ 3)

216n
(45)

128

π2
=

∞∑
n=0

(−1)n
(
2n
n

)5
(820n2 + 180n+ 13)

220n
(46)

2

π
=

∞∑
n=0

(−1)n
(

2n

n

)3
4n+ 1

64n
(47)

4

π
=

∞∑
n=0

(
2n

n

)3
6n+ 1

256n
(48)

π + 4 =

∞∑
n=0

2n+1(
2n
n

) (49)

6

π2
= 64

∞∑
n=0

(6n)!(532n2 + 126n+ 9)

(n!)6106n+3
(50)

π

4
=

∫ 1

0

dx

1 + x2
(51)

5



π

4
=

∫ 1

0

√
1− x2 dx (52)

π − 2

4
=

∫ 1

0

x tan−1 x dx (53)

π(π − 12)

48
+

log 2

2
=

∫ 1

0

log x tan−1 xdx (54)

22

7
− π =

∫ 1

0

x4(1− x)4 dx

1 + x2
(55)

π

8
=

∫ 1

0

x2 dx

(1 + x4)
√

1− x4
(56)

π(1 + 2 log 2)

8
=

∫ ∞
0

xe−x
√

1− e−2x dx (57)

4π log2 2 +
π3

3
=

∫ ∞
0

x2 dx√
ex − 1

(58)

π log 2 =

∫ π/2

0

x2 dx

sin2 x
(59)

π3

24
+
π log2 2

2
=

∫ π/2

0

log2(cosx) dx (60)

8π3

81
√

3
=

∫ 1

0

log2 xdx

x2 + x+ 1
(61)

π

2
− log 2 =

∫ 1

0

log(1 + x2) dx

x2
(62)

√
π = Γ(1/2) =

∫ ∞
0

x−1/2e−x dx (63)

−π
4

+
3 log(2 +

√
3)

2
=

∫ 1

0

∫ 1

0

∫ 1

0

dxdy dz√
x2 + y2 + z2

(64)

− π

24
+

√
3

4
+

log(2 +
√

3)

2
=

∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + z2 dxdy dz (65)

− π

60
+

2
√

3

5
+

7 log(2 +
√

3)

20
=

∫ 1

0

∫ 1

0

∫ 1

0

(x2 + y2 + z2)3/2dx dy dz (66)

5− π2 − 4 log 2 + 16 log2 2 =

∫ 1

0

∫ 1

0

(
x− 1

x+ 1

)2(
y − 1

y + 1

)2(
xy − 1

xy + 1

)2

dxdy (67)

6



3 Iterative algorithms for π

• (The Archimedes iteration). Set a0 = 2
√

3 and b0 = 3. Iterate, beginning with k = 0,

ak+1 =
2akbk
ak + bk

, bk+1 =
√
ak+1bk. (68)

Then both ak and bk converge to π: each iteration decreases the distance between ak and bk (which
interval contains π) by a factor of approximately four.

• (The Brent-Salamin iteration). Set a0 = 1, b0 = 1/
√

2 and s0 = 1/2. Iterate, beginning with k = 0,

ak+1 =
ak + bk

2
, bk+1 =

√
akbk,

ck+1 = a2k+1 − b2k+1, sk+1 = sk − 2k+1ck+1,

pk+1 =
2a2k+1

sk+1
. (69)

Then pk converges quadratically to π: each iteration approximately doubles the number of correct digits.

• (The Borwein cubic iteration). Set a0 = 1/3 and s0 = (
√

3− 1)/2. Iterate, beginning with k = 0,

rk+1 =
3

1 + 2(1− s3k)1/3
, sk+1 =

rk+1 − 1

2
,

ak+1 = r2k+1ak − 3k(r2k+1 − 1). (70)

Then 1/ak converges cubically to π: each iteration approximately triples the number of correct digits.
The Borweins also published a quadratically convergent algorithm, but that is not listed here.

• (The Borwein quartic iteration). Set a0 = 6− 4
√

2 and y0 =
√

2− 1. Iterate, beginning with k = 0,

yk+1 =
1− (1− y4k)1/4

1 + (1− y4k)1/4

ak+1 = ak(1 + yk+1)4 − 22k+3yk+1(1 + yk+1 + y2k+1). (71)

Then 1/ak converges quartically to π: each iteration approximately quadruples the number of correct
digits. Brent has shown that the Borwein quartic iteration is in fact mathematically equivalent to two
iterations of the Brent-Salamin algorithm [21].

• (The Borwein nonic iteration). Set a0 = 1/3, r0 = (
√

3− 1)/2, s0 = (1− r30)1/3. Then iterate, beginning
with k = 0,

tn+1 = 1 + 2rn, un+1 = (9rn(1 + rn + r2n))1/3

vn+1 = t2n+1 + tn+1un+1 + u2
n+1, wn+1 =

27(1 + sn + s2n)

vn+1

an+1 = wn+1an + 32n−1(1− wn+1)

sn+1 =
(1− rn)3

(tn+1 + 2un+1)vn+1
, rn+1 = (1− s3n+1)1/3. (72)

Then 1/ak converge nonically to π: each iteration approximately nine-times the number of correct digits.

7



4 Credits

• Formula 1 was discovered by Leibniz and Gregory in the 1600s. Formula 2 was attributed to Euler in
1738. Formula 3 was discovered about the same time by Machin [17, 105]. The related arctangent-based
formulas 4, 5, 6 and 7 were used by Dase, Ferguson, Kanada and Kanada, respectively [17, 106, 107,
111].

• Formula 8 is due to the Indian mathematician Madhava of Sangamagramma, who lived in the late 1300s
and early 1400s [17, 107]. Formula 9 was discovered by Newton in the mid-1600s [17, 106]. Formula 10
was discovered by Wallis at about the same time.

• Formula 11 is due to Ramanujan, and was used by Gosper in 1986 to compute π to over 17 million
digits. The similar but more complicated formula 12 is due to David and Gregory Chudnovsky, and was
used by them to compute π to over one billion decimal digits [17, 108].

• Formula 13 is known as the “BBP” formula for π, named for the initials of the co-authors of the 1997
paper where it was first presented [14][17, 119–124]. It was discovered by a computer program running
the “PSLQ” algorithm of mathematician-sculptor Helaman Ferguson [25, 15]. Formula 14 is a variant of
the BBP formula due to Bellard [17, 124]. Formula 15 was found by Helaman Ferguson and independently
by Adamchik and Wagon, who first published it [1].

• Formula 16 appeared in [14]. Formulas 17 and 18 are due to David Broadhurst [22].

• Some of the summation formulas involving factorials and combinatorial coefficients (i.e., formulas 19
through 50) were found by Ramanujan; others are due to David and Gregory Chudnovsky. The Chud-
novskys had these and many other formulas of this general type inscribed on the floor of their research
center at Brooklynn Polytechnic University in New York City [24]. Four exceptions are formula 36,
which is due to Ramanujan but appeared in [19, 188], formulas 45 and 46, which are due to Guillera
[27], and formula 50, which is due to Almkvist and Guillera [2].

• Formulas 51 through 63 have been known for many years; many are from [18, 5, 48, 320–321].

• Formulas 64 through 66 are examples of recent discoveries, by computational methods involving the
PSLQ algorithm [25, 15], in the theory of box integrals [11, 12]. Formula 65, for instance, can be
thought of as specifying the average distance from the origin to a point in the unit 3-cube.

• Formula 67 is an example of numerous formulas, also obtained by computational methods involving the
PSLQ algorithm [25, 15], in studies of the Ising theory of mathematical physics [10].

• Formula 68, is mathematically equivalent to Archimedes’ approach involving computing the areas of
inscribed and circumscribed regular polygons [4]. Archimedes’ scheme was used for all computations of
π in ancient times, including by the fifth century Chinese mathematician Tsu Chung-Chih and, evidently,
by the fifth century Indian mathematician Aryabhata [7].

• Formula 69 is the Brent-Salamin iteration, the first quadratically convergent scheme for π, which was
discovered independently by Richard Brent and Eugene Salamin in 1976 [17, 109–110]. Formula 70
(a cubically convergent iteration), formula 71 (a quartically convergent iteration) and formula 72 (a
nonically convergent iteration) are due to Jonathan and Peter Borwein [17, 110][20].

5 Performance results

One question that frequently arises in discussions of formulas and algorithms for π is how they compare
when implemented on the computer. To that end, we present here timings for a carefully designed set of
comparative computer runs. Timings are presented for the infinite series summation formulas (using 10,000-
digit precision), for the integral formulas (using 4,000-digit precision), and for the iterative algorithm formulas
(using 100,000-digit precision).

8



5.1 Software

The present author tried several different approaches to these timings, including Mathematica software and
various high-precision arithmetic libraries. One difficulty with Mathematica implementations is that it is
difficult to control how much symbolic manipulation and simplification is being done “under the covers” of
the user code. Also, evaluation of the integral formulas is problematic using Mathematica, because it is
difficult to control details of the implementation, even when specifying the method to be used.

In the end, the author decided to base the timings below on Fortran implementations utilizing the author’s
MPFUN-2015 package [5], in particular the MPFUN-MPFR version of MPFUN-2015. This is a high-level
multiprecision package, in the sense that it permits one to perform arbitrarily high-precision computations in a
Fortran program by making only a few changes to standard double-precision code. For the most part, one only
needs to declare high-precision variables to be of a certain datatype, and then the software automatically calls
the requisite lower-level routines from the package whenever one of these variables appears in an expression.
The package supports both high-precision real and high-precision complex datatypes. The MPFUN-2015
package is entirely thread-safe, so that applications using the package can be performed safely in shared-
memory parallel implementations. For full details, see [5].

The MPFUN-2015 package is available in two versions, MPFUN-Fort and MPFUN-2015. The MPFUN-
Fort version is written in Fortran, and thus it is a simple matter to compile, install and use. The MPFUN-
MPFR version has the same functionality as MPFUN-Fort, but calls the MPFR library [26] for all lower-level
computations. At the present time the MPFR library features the fastest runtimes of any arbitrary precision
floating-point library [30]. It also produces results that are correctly rounded to the last bit. Thus while the
the installation process of the MPFUN-MPFR is more involved (because both the MPFR library and the
GMP library must be installed first, using administrator privilege), it features very fast run times.

A newer version of this package, MPFUN-2020, which features significantly faster all-Fortran run times,
is now available [6], although it was not used for these computations.

5.2 Evaluation of summation formulas

The summation formulas (formula 1 through formula 50) were all evaluated using a consistent approach and
coding style. It is important to note that these are purely numerical evaluations — symbolic manipulations
and simplifications, such as by noting that

∑
n≥0(−1)n/((2n + 1)82n+1) = arctan(1/8), were not employed.

Some straightforward computational simplifications were employed, typical of those that would be utilized in
any efficient implementation. For example, numerators and denominators were separately evaluated, because
they are integers, and powers such as 22n+1 and binomial coefficients such as

(
2n
n

)
were evaluated incrementally

from iteration to iteration in a loop. Each individual summation was performed only until its terms were less
than 10−10000.

It should be added, though, that advanced techniques such as “multisectioning” and “divide and conquer”
strategies were not performed. These terms refer to evaluating sections of consecutive terms in the summation,
with integer coefficients in the numerators and denominators factored out as much as possible. Such techniques
do not make much difference for runs up to 10,000 digits or so, as in these tests, but have been employed in
computations of π to many millions of digits. The most successful of these implementations is the “y-cruncher”
program of Alexander J. Yee [32], which has been used in the most recent computations of π, based on the
Chudnovsky formula (12). In the latest computation, announced on 18 August 2021, a record 62.8 trillion
decimal digits were computed by a team of Swiss researchers [23].

The timings for the summation formula computer runs are presented in Table 1. As mentioned above,
these timings are based on runs to 10,000-digit precision. In some cases, timings are not listed, because these
formulas would require astronomical numbers of terms to produce 10,000-digit results.

9



5.3 Tanh-sinh quadrature

From a computational standpoint, integral formulas are no match to the most efficient summation formulas
and iterative algorithms, but are still nonetheless fairly reasonable if performed using an efficient quadrature
(numerical integration) scheme. To that end, the author used variations of the tanh-sinh algorithm for all
of the integral formulas (formulas 51 through 67). The tanh-sinh scheme, while often not quite as efficient
as Gaussian quadrature for entirely regular integrand functions, nonetheless has significant advantages for
this type of very high-precision computation [16]. Given a function f(t) defined on [−1, 1], the tanh-sinh
quadrature rule is ∫ 1

−1

f(x) dx =

∫ ∞
−∞

f(g(t))g′(t)dt ≈ h

N∑
j=−N

wjf(xj), (73)

where g(t) = tanh(π/2 · sinh t) and the abscissas xj and weights wj are given by

xj = g(hj) = tanh(π/2 · sinh(hj))

wj = g′(hj) = π/2 · cosh(hj)/ cosh2(π/2 · sinh(hj)) (74)

The tanh-sinh scheme can be used for functions on any finite interval. A variation of the tanh-sinh scheme
known as the exp-sinh scheme, based on the function g(t) = exp(π/2 · sinh t), can be employed for integrals
on a semi-infinite interval such as (0,∞). The sinh-sinh scheme, based on g(t) = sinh(π/2 · sinh t), can be
employed for integrals on the entire real line.

One advantage of the tanh-sinh scheme is that it can be readily used for problems, such as formulas 56 and
58, whose integrand functions (or their higher-order derivatives) have a vertical derivatives or singularities at
one or both endpoints. It is often not easy to determine whether or not an integral has such a singularity. For
example, consider the integral

∫ 1

0
sinp(πx)ζ(p, x) dt, where ζ(p, x) denotes the Hurwitz zeta function. When

p = 3, this integrand function and its higher derivatives are all regular, and can be integrated using Gaussian
quadrature, but when p = 7/2 = 3.5, while the plot of this function looks unremarkable, its fourth and
higher derivatives have singularities at the endpoints, and Gaussian quadrature fails badly. By contrast, the
tanh-sinh quadrature rule easily integrates this function to high precision [8].

Another major advantage of the tanh-sinh scheme for very-high-precision computation is that the cost of
computation of abscissas and weights, using (74), increases only linearly with N , whereas the abscissa-weight
computation in Gaussian quadrature increases quadratically with N . Given that the number of evaluation
points required to achieve a given precision increases roughly linearly with the number of digits, this means
that the cost of computing abscissas and weights for the Gaussian scheme increases roughly cubically with
the precision desired, compared with quadratically with tanh-sinh, even before the increases in the cost of the
arithmetic with higher precision are considered. For example, computation of tanh-sinh abscissas and weights
sufficient to evaluate the integral problems in this paper to approximately 4,000-digit accuracy required only
167 seconds, whereas the corresponding calculations for Gaussian quadrature would require over 100 hours
run time (and the Gaussian scheme, as mentioned above, could not be used for formulas 56 and 58, because
of singularities at endpoints).

Timings for evaluations of the integral formulas are shown in Table 2. The tanh-sinh scheme was employed
for all formulas except formulas 57, 58 and 63, which employed the exp-sinh scheme.

5.4 Evaluations of multiple integrals

As noted in the introduction, formulas 64, 65 and 66 derive from a recent study of box integrals [11, 12]. In this
study, high-precision numerical values of these integrals (and others) were used, in conjunction with the PSLQ
integer relation algorithm [25, 15], to numerically discover the relations indicated. A similar approach was
taken to numerically discover evaluations of integrals such as formula 67 that derive from the Ising theory of

10



mathematical physics [10]. Indeed, such studies overwhelmingly demonstrate the value of very high-precision
quadrature in experimental mathematics.

Numerical evaluations of formulas 64, 65 and 66 were facilitated by the discovery [11, 12] that these
multidimensional box integrals can be rewritten, in most cases, in terms of 1-D integrals, and similarly for
formula 67 from Ising studies [10]. In particular, the computations reported here for formulas 64, 65, 66 and
67 are based, respectively, on the following reductions to 1-D integrals:

∫ 1

0

∫ 1

0

∫ 1

0

dx dy dz√
x2 + y2 + z2

= 3

∫ 1

0

√
t2 + 2− 1

t2 + 1
dt (75)∫ 1

0

∫ 1

0

∫ 1

0

√
x2 + y2 + z2 dxdy dz =

1

2

∫ 1

0

(t2 + 2)3/2 − 1

t2 + 1
dt (76)∫ 1

0

∫ 1

0

∫ 1

0

(x2 + y2 + z2)3/2dxdy dz =
1

5

∫ 1

0

(t2 + 2)5/2 − 1

t2 + 1
dt (77)∫ 1

0

∫ 1

0

(
x− 1

x+ 1

)2(
y − 1

y + 1

)2(
xy − 1

xy + 1

)2

dxdy =∫ 1

0

[
t(−7 + 4 log(2)) + t2(1 + 20 log(2)) + t3(3 + 12 log(2))

t(t− 1)(t+ 1)2

+
t4(3− 4 log(2))− 4(1 + t)(−1 + 4t+ t2) log(1 + t)

t(t− 1)(t+ 1)2

]
dt (78)

5.5 Evaluations of iterative algorithms

In addition to the summation integral formulas, results are presented here for five iterative algorithms, namely
the Archimedes iteration (formula 68), the Brent-Salamin iteration (formula 69), the Borwein cubic iteration
(formula 70), the Borwein quartic iteration (formula 71) and the Borwein nonic iteration (formula 72).

The Archimedes iteration is mathematically equivalent to the scheme sketched by the ancient Greek
mathematician Archimedes in approximately 250 BCE. For details on how this iterative formula is derived,
and a rigorous proof that it converges to π, see [4].

The remaining iterative algorithms have the remarkable property that they converge quadratically (formula
69), cubically (formula 70), quartically (formula 71) and nonically (formula 72), respectively, meaning that
the number of correct digits approximately doubles, triples, quadruples and nine-times, respectively, with
each iteration, provided of course that all iterations are performed with a level of numeric precision that is at
least as high as the precision desired for the final result.

These iterations were implemented in an entirely straightforward fashion. The only change from the
formulas as stated were to save results of some intermediate expressions, such as the value of (1 − y4k)1/4 in
71), rather than recomputing them each time they appear.

6 Timing results

Timing results for the summation formulas (using 10,000-digit precision), the integral formulas (using 4,000-
digit precision) and the iterative algorithms (using 100,000-precision) are given in Tables 1, 2 and 3, respec-
tively. These runs were performed on a single processor of a 2019 MacPro with a 3 GHz 8-core Intel Xeon
E5 processor and 32 GB RAM. It utilized the MPFUN-MPFR package, version 9, with version 4.0.2 of the
MPFR library and version 6.1.2 of the GMP library.

The final results of each calculation were checked against the reference values to verify that the relative
errors met the prescribed tolerance. Each of the summation formula results met the relative error tolerance
10−10000, except formulas 9, 19, 31 and 50 (which met a relative error of 10−9998). Each of the integral formula

11



results met the relative error tolerance 10−4000, except formula 51 (10−3948), formula 58 (10−3688) and formula
63 (10−3954). Each of the iterative algorithm results met the relative error tolerance 10−100000.

These results clearly indicate a very wide range in timings, even among formulas of the same class. Among
the summation formulas, timings ranged from 0.12 seconds for formula 11 (a formula due to Ramanujan that
has been used in some recent large computations of π) to 45.53 seconds for formula 31, which in spite of its
similar outward appearance to other formulas involving binomial coefficients, converges very slowly. And,
of course, several other formulas (1, 10, 20 and 47) converge so slowly that no timings are presented, since
evaluations of π to 10,000-digit precision using these formulas would require astronomically long run times.
For example, evaluating π to 10,000-digit precision strictly using Gregory’s series for π (formula 1) would
require evaluating roughly 1010000 terms and vastly more run time than the age of the universe.

From a computational perspective, the integral formulas are more challenging, as they require advanced
techniques for evaluation to high precision, as noted above. Even here, though, we observe vast differences in
run time, ranging from 1.26 seconds using the simple integral in formula 52 to 100.45 seconds for the integral
in formula 57. The large run time here mostly reflects the cost of computing the exponential function in 57.
Note, however, that a complicated integrand function by itself does not guarantee a very long run time. The
most complicated integral in the list, namely formula 67, which was evaluated using the equivalent but still
very complicated 1-D integral in formula 78, required only 35.2 seconds to produce a 4,000-digit value.

The iterative algorithm formulas show a particularly dramatic contrast in run times. Here, as mentioned
above, the timings are for computations using 100,000-digit arithmetic. The Archimedean iteration, namely
formula 68, required 166,133 iterations and 1015.39 seconds run time to produce a result accurate to 100,000
digits. But each of the more modern iterations, specifically the Brent-Salamin algorithm (69) and the three
Borwein algorithms (70, 71, 72), all required between 0.11 and 0.14 seconds, which are truly remarkable speeds
for 100,000-digit results.

It should be noted, however, that although the Brent-Salamin algorithm (69) and the Borwein quartic
algorithm (71) have been used in several recent large computations of π, the Chudnovsky formula (12) is
now the most widely used formula for very large computations of π. Even though it is significantly slower
than the Brent-Salamin and Borwein formulas, by the tests reported in this paper, advanced techniques such
as multisectioning and divide-and-conquer strategies can be employed with this formula, which techniques
prevail in computations to millions, billions or trillions of digits.

12



Formula Run time Terms of series Formula Run time Terms of series
1 — — 26 0.69 6693
2 2.49 16602, 10475 27 0.88 8855
3 0.83 7150, 2101 28 1.64 16627
4 2.62 16602, 7150, 5534 29 0.39 3988
5 1.23 8301, 3842, 1516 30 0.60 5685
6 0.79 2957, 2847, 2101, 991 31 45.53 442610
7 0.71 2847, 2101, 1764, 1216 32 14.05 135741
8 1.87 20950 33 2.07 20040
9 1.77 16590 34 1.12 10818
10 — — 35 1.12 10819
11 0.12 1253 36 2.00 5536
12 0.72 706 37 1.78 16607
13 2.93 8298 38 0.38 3983
14 2.65 16603, 3322 39 0.16 1698
15 5.83 16603 40 0.99 10477
16 1.98 5533 41 0.50 5239
17 0.40 3491 42 0.56 5947
18 0.43 3491 43 0.21 2266
19 1.61 16621 44 0.28 2958
20 — — 45 2.95 8304
21 1.12 11088 46 1.21 3322
22 0.88 8320 47 — —
23 2.43 24815 48 6.60 16607
24 2.43 24817 49 3.09 33229
25 0.86 8854 50 0.72 7510

Table 1: Timings for evaluations of summation formulas to approximately 10,000-digit precision.

13



Formula Run time Subdivisions
51 1.85 4096
52 1.26 4096
53 34.15 4096
54 59.62 4096
55 2.46 4096
56 8.89 8192
57 100.45 16384
58 79.25 16384
59 82.58 4096
60 79.03 4096
61 28.11 4096
62 21.03 4096
63 82.43 16384
64 2.18 4096
65 6.39 4096
66 7.20 4096
67 35.20 4096

Table 2: Timings for evaluations of integral formulas to approximately 4,000-digit precision.

Formula Run time Iterations
68 1015.39 83093
69 0.13 16
70 0.11 9
71 0.11 7
72 0.14 5

Table 3: Timings for evaluations of iterative algorithm formulas to approximately 100,000-digit precision.

14



References

[1] Victor Adamchik and Stan Wagon, “A simple formula for pi,” American Mathematical Monthly, vol.
104 (Nov. 1997), 852–855, https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/

Monthly_Reference_9.pdf.

[2] Gert Almkvist and Jesus Guillera, “Ramanujan-like series for 1/π2 and string theory,” 27 Sept. 2010,
available at http://arxiv.org/abs/1009.5202.

[3] David H. Bailey, “A compendium of BBP-type formulas for mathematical constants,” updated 15 Aug
2017, http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf.

[4] David H. Bailey, “Simple proofs: Archimedes’ calculation of pi,” Math Scholar, 9 Feb 2019, https:

//mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/.

[5] David H. Bailey, “MPFUN2015: A thread-safe arbitrary precision package (full documentation),”
manuscript, updated 7 Feb 2020, https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf.

[6] David H. Bailey, “MPFUN2020: A new thread-safe arbitrary precision package (full documentation),”
manuscript, updated 20 Jul 2021, https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf.

[7] David H. Bailey and Jonathan M. Borwein, “Ancient Indian square roots: An exercise in forensic paleo-
mathematics,” American Mathematical Monthly, vol. 119, no. 8 (Oct 2012), 646-657, preprint draft at
https://www.davidhbailey.com/dhbpapers/india-sqrt.pdf.

[8] David H. Bailey and Jonathan M. Borwein, “Hand-to-hand combat with thousand-digit integrals,” Jour-
nal of Computational Science, vol. 3 (2012), 77–86, preprint draft at https://www.davidhbailey.com/

dhbpapers/combat.pdf.

[9] David H. Bailey, Jonathan M. Borwein, Peter B. Borwein and Simon Plouffe, “The quest for Pi,” Math-
ematical Intelligencer, vol. 19, no. 1 (Jan 1997), 50-57, preprint draft at https://www.davidhbailey.

com/dhbpapers/pi-quest.pdf.

[10] David H. Bailey, Jonathan M. Borwein and Richard E. Crandall, “Integrals of the Ising class,” Journal
of Physics A: Mathematical and General, vol. 39 (2006), 12271–12302, preprint draft at https://www.

davidhbailey.com/dhbpapers/ising.pdf.

[11] David H. Bailey, Jonathan M. Borwein and Richard E. Crandall, “Box integrals,” Journal of Computa-
tional and Applied Mathematics, vol. 206 (2007), 196–208, preprint draft at https://www.davidhbailey.
com/dhbpapers/boxintegrals.pdf.

[12] David H. Bailey, Jonathan M. Borwein and Richard E. Crandall, “Advances in the theory of box in-
tegrals,” Mathematics of Computation, vol. 79, no. 271 (Jul. 2010), 1839–1866, https://www.ams.org/
journals/mcom/2010-79-271/S0025-5718-10-02338-0/S0025-5718-10-02338-0.pdf.

[13] David H. Bailey, Jonathan M. Borwein, Andrew Mattingly and Glenn Wightwick, “The computation
of previously inaccessible digits of π2 and Catalan’s constant,” Notices of the American Mathematical
Society, vol. 60 (2013), no. 7, 844–854, available at https://www.ams.org/notices/201307/rnoti-p844.
pdf.

[14] David H. Bailey, Peter B. Borwein and Simon Plouffe, “On the rapid computation of various poly-
logarithmic constants,” Mathematics of Computation, vol. 66, no. 218 (Apr. 1997), 903–913, https:

//www.ams.org/journals/mcom/1997-66-218/S0025-5718-97-00856-9/S0025-5718-97-00856-9.pdf.

[15] David H. Bailey and David J. Broadhurst, “Parallel integer relation detection: Techniques and applica-
tions,” Mathematics of Computation, vol. 70, no. 236 (Oct. 2000), 1719–1736, https://www.ams.org/

journals/mcom/2001-70-236/S0025-5718-00-01278-3/S0025-5718-00-01278-3.pdf.

[16] David H. Bailey, Xiaoye S. Li and Karthik Jeyabalan, “A comparison of three high-precision quadrature
schemes,” Experimental Mathematics, vol. 14 (2005), no. 3, 317-329, https://www.davidhbailey.com/
dhbpapers/quadrature-em.pdf.

15

https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_9.pdf
https://www.maa.org/sites/default/files/pdf/pubs/amm_supplements/Monthly_Reference_9.pdf
http://arxiv.org/abs/1009.5202
http://www.davidhbailey.com/dhbpapers/bbp-formulas.pdf
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/
https://mathscholar.org/2019/02/simple-proofs-archimedes-calculation-of-pi/
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
https://www.davidhbailey.com/dhbpapers/mpfun2020.pdf
https://www.davidhbailey.com/dhbpapers/india-sqrt.pdf
https://www.davidhbailey.com/dhbpapers/combat.pdf
https://www.davidhbailey.com/dhbpapers/combat.pdf
https://www.davidhbailey.com/dhbpapers/pi-quest.pdf
https://www.davidhbailey.com/dhbpapers/pi-quest.pdf
https://www.davidhbailey.com/dhbpapers/ising.pdf
https://www.davidhbailey.com/dhbpapers/ising.pdf
https://www.davidhbailey.com/dhbpapers/boxintegrals.pdf
https://www.davidhbailey.com/dhbpapers/boxintegrals.pdf
https://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02338-0/S0025-5718-10-02338-0.pdf
https://www.ams.org/journals/mcom/2010-79-271/S0025-5718-10-02338-0/S0025-5718-10-02338-0.pdf
https://www.ams.org/notices/201307/rnoti-p844.pdf
https://www.ams.org/notices/201307/rnoti-p844.pdf
https://www.ams.org/journals/mcom/1997-66-218/S0025-5718-97-00856-9/S0025-5718-97-00856-9.pdf
https://www.ams.org/journals/mcom/1997-66-218/S0025-5718-97-00856-9/S0025-5718-97-00856-9.pdf
https://www.ams.org/journals/mcom/2001-70-236/S0025-5718-00-01278-3/S0025-5718-00-01278-3.pdf
https://www.ams.org/journals/mcom/2001-70-236/S0025-5718-00-01278-3/S0025-5718-00-01278-3.pdf
https://www.davi dhbailey.com/dhbpapers/quadrature-em.pdf
https://www.davi dhbailey.com/dhbpapers/quadrature-em.pdf


[17] Jonathan M. Borwein and David H. Bailey, Mathematics by Experiment: Plausible Reasoning in the 21st
Century, AK Peters, Natick, MA, 2008.

[18] Jonathan M. Borwein, David H. Bailey and Roland Girgensohn, Experimentation in Mathematics: Com-
putational Paths to Discovery, AK Peters, Natick, MA 2004.

[19] Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM: A Study in Analytic Number Theory
and Computational Complexity, CMS Series of monographs and Advanced Books in Mathematics, John
Wiley, Hoboken, NJ, 1987.

[20] David H. Bailey, Jonathan M. Borwein, Peter B. Borwein and Simon Plouffe, “The quest for Pi,” Math-
ematical Intelligencer, vol. 19, no. 1 (Jan 1997), 50–57, preprint draft at https://www.davidhbailey.

com/dhbpapers/pi-quest.pdf.

[21] Richard P. Brent, “The Borwein brothers, Pi and the AGM,” in From Analysis to Visualization: A
Celebration of the Life and Legacy of Jonathan M. Borwein, David H. Bailey, Naomi Simone Borwein,
Richard P. Brent, Regina S. Burachik, Judy-anne Heather Osborn, Brailey Sims and Qiji J. Zhu, ed.,
Springer Proceedings of Mathematics and Statistics, vol. 313, Springer, 2020, 323–347.

[22] David J. Broadhurst, “Massive 3-loop Feynman diagrams reducible to SC* primitives of algebras of the
sixth root of unity,” manuscript, 1998, http://www.arxiv.org/abs/hep-th/9803091.

[23] Isaac Castella-McDonald, “New record for pi calculation: Down to 62.8 trillion digits,” Impakter, 18 Aug
2021, available at https://impakter.com/new-record-for-pi-62-trillion-digits/.

[24] David and Gregory Chudnovsky, “Listing of Ramanujan-type formulas,” copy in author’s possession,
2000.

[25] Helaman R. P. Ferguson, David H. Bailey and Stephen Arno, “Analysis of PSLQ, an integer relation
finding algorithm,” Mathematics of Computation, vol. 68, no. 225 (Jan. 1999), 351–369, https://www.
ams.org/journals/mcom/1999-68-225/S0025-5718-99-00995-3/S0025-5718-99-00995-3.pdf.

[26] Laurent Fousse, Guillaume Hanrot, Vincent Lefevre, Patrick Pelissier and Paul Zimmermann, “MPFR:
A multiple-precision binary floating-point library with correct rounding,” ACM Transactions on Mathe-
matical Software, vol. 33, no. 2 (June 2007), https://doi.org/10.1145/1236463.1236468.

[27] Jesus Guillera, “Some binomial series obtained by the WZ-method,” Advances in Applied Mathematics,
vol. 29 (2002), 599–603.

[28] “Johann Heinrich Lambert,” Wikipedia article, viewed 8 Dec 2021, available at https://en.wikipedia.
org/wiki/Johann_Heinrich_Lambert.

[29] “Ferdinand von Lindemann,” Wikipedia article, viewed 8 Dec 2021, available at https://en.wikipedia.
org/wiki/Ferdinand_von_Lindemann.

[30] MPFR research team, “Comparison of multiple-precision floating-point software,” accessed 12 Mar 2020,
https://www.mpfr.org/mpfr-4.0.1/timings.html.

[31] Jason Palmer, “Pi record smashed as team finds two-quadrillionth digit,” BBC News, 16 Sep 2010,
available at https://www.bbc.com/news/technology-11313194.

[32] Alexander J. Yee, “y-cruncher – A multi-threaded pi-program,” updated 12 Mar 2020, http://www.

numberworld.org/y-cruncher/.

16

https://www.davidhbailey.com/dhbpapers/pi-quest.pdf
https://www.davidhbailey.com/dhbpapers/pi-quest.pdf
http://www.arxiv.org/abs/hep-th/9803091
https://impakter.com/new-record-for-pi-62-trillion-digits/
https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00995-3/S0025-5718-99-00995-3.pdf
https://www.ams.org/journals/mcom/1999-68-225/S0025-5718-99-00995-3/S0025-5718-99-00995-3.pdf
https://doi.org/10.1145/1236463.1236468
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Johann_Heinrich_Lambert
https://en.wikipedia.org/wiki/Ferdinand_von_Lindemann
https://en.wikipedia.org/wiki/Ferdinand_von_Lindemann
https://www.mpfr.org/mpfr-4.0.1/timings.html
https://www.bbc.com/news/technology-11313194
http://www.numberworld.org/y-cruncher/
http://www.numberworld.org/y-cruncher/

	Background
	A catalogue of formulas for 
	Iterative algorithms for 
	Credits
	Performance results
	Software
	Evaluation of summation formulas
	Tanh-sinh quadrature
	Evaluations of multiple integrals
	Evaluations of iterative algorithms

	Timing results

